A Lipschitz estimate for Berezin’s operator calculus

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lipschitz Operator Algebras

In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an α-Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that F : K → A is a α-Lipschitz operator if and only if for each σ ∈ X∗ the mapping σ ◦ F is a α-Lipschitz function. The Lipschitz operators algebras Lα(K,A) and lα(K,A) are developed here further, and we st...

متن کامل

On fully operator Lipschitz functions

Let A(D) be the disc algebra of all continuous complex-valued functions on the unit disc D holomorphic in its interior. Functions from A(D) act on the set of all contraction operators (‖A‖ 1) on Hilbert spaces. It is proved that the following classes of functions from A(D) coincide: (1) the class of operator Lipschitz functions on the unit circle T; (2) the class of operator Lipschitz functions...

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

A Bilinear Estimate for Biharmonic Functions in Lipschitz Domains

We show that a bilinear estimate for biharmonic functions in a Lipschitz domain Ω is equivalent to the solvability of the Dirichlet problem for the biharmonic equation in Ω. As a result, we prove that for any given bounded Lipschitz domain Ω in Rd and 1 < q < ∞, the solvability of the Lq Dirichlet problem for ∆2u = 0 in Ω with boundary data in WA(∂Ω) is equivalent to that of the Lp regularity p...

متن کامل

A differential operator and weak topology for Lipschitz maps

We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2004

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-04-07476-3